

Results of the CEDR* project DISTANCE

Luc Goubert Opzoekingscentrum voor de Wegenbouw

*CEDR = Conférence Européenne des Directeurs des Routes

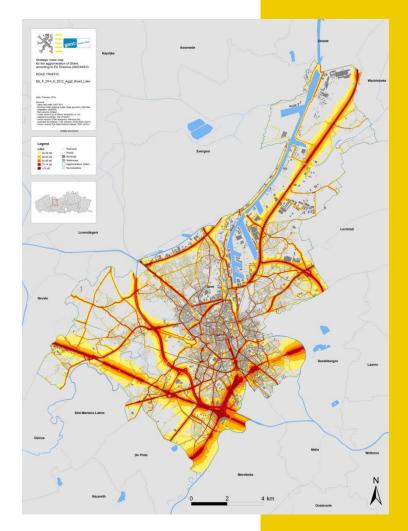
SILENTROADS 12 APRIL 2016 OPZOEKINGSCENTRUM VOOR DE WEGENBOUW - STERREBEEK

The DISTANCE project

- <u>Developing Innovative Solutions for TrAffic</u> <u>Noise Control in Europe</u>
- Goal of the project: produce guidelines to allow National Road Administrations (NRA's) to optimize traffic noise abatement on main road networks

The DISTANCE project as answer to the CEDR call

- 1. Improve quality of noise maps: which noise asset information should be gathered and to which precision?
- 2. Assessment of development of traffic
- 3. Novel noise abatement measures
- 4. Additional functions for noise screens (and pavements)
- 5. Noise reduction ≠ nuisance reduction: what can be done with the psychological effects?


Methodology

- No own research
- Data mining in accessible sources
- Add own assessment and expert vision
- Present the information in guidelines in a practical, quickly accessible format

Data requirements for future noise mapping and action planning

Objectives

list and evaluate data needed to produce more robust

future strategic noise maps and action planning

Harmonized EU calculation model

= CNOSSOS-EU

Data types in the study

Group of data	Data type				
	Pavement Type				
Road Surfaces	Pavement Degeneration				
	Barrier Type				
	Barrier Dimension				
	Barrier Position				
Noise Barriers	Barrier Absorption				
	Barrier Top				
	Barrier Transmission				
	Barrier Degeneration				
	Vehicle Category				
Traffic Data	Speed				
	Quantity				
	Topography				
	Building Height				
Geospatial Data	Road Information				
	Building Type				
	Ground Surface				

SILENTROADS

VOOR DE WEGNBOUW 2016 OPZOEKINGSCENTRUM STERREBEEK 12 APRIL 3

Road surfaces

Data type	Are the NRAs prepared for new requirements?	What needs to be done by the NRAs	Co-oper. across NRAs
Pavement Type	Yes. Categories are based on physical parameters. But some have low coverage.		Yes
Pavement Degeneration	No. Except for a few countries.	National investigations to establish average effects, or to underline other conclusions.	Yes

Noise Barriers

Data type	Are the NRAs prepared for new requirements?	What needs to be done by the NRAs	Co-oper. across NRAs			
Barrier Type		•				
Barrier Transmission	These data types are not investigated specifically in this study because of lack of support in the calculation methods, including CNOSSOS-EU					
Barrier Degeneration						
Barrier Top						
Barrier Dimension	Yes, for most countries.	For some countries: Improve precision.	No			
Barrier Position						

Conclusions

- NRAs seem to be well prepared for the CNOSSOS-EU requirements
- But for some issues more work need to be made by many NRAs before the requirement is fulfilled, a.o.
 - pavement degradation
 - ground surfaces
 - ...
- Should be addressed internationally

OR DE WEGNBOUW

Multi-function noise barriers and pavements

Multi-function noise barriers

Multi-function noise barriers

Description of			pact	Why	Why not	Potential		
enhancement	feasibility	impact	Ecological ('planet')	Financial ('profit')	Social ('people')			for use by NRA
PVNB	Now	= to +	*	1		Renewable energy generation	Maintenance and overall cost	
Safety barriers	Now	+			1	2 functions in 1	Safety issues	
Added devices	Now to Near	= to +			1	Additional reducing noise	Difficult to predict noise benefit	
Enhanced visual characteristics	Now	= to +			1	Urban aesthetics	Cost?	
Transparency	Now	+			1	Urban aesthetics	Cost, safety	
Recycled materials	Now to Future	= to +	*	1		Cost and ecology	None	
Green barriers	Now	= to +			1	Urban aesthetics	Maintenance	
TiO2 capture	Near	++	1		1	Health issues	Efficiency	
Electrostatic capture	Future	++	1		1	Health issues	Efficiency	
Lighting	Future	Unknown			~	2 functions in 1	Cost	* * * * * * * * * * * *
Adverts/information	Now-Future	Unknown	*		*		Distraction of drivers	
Rainwater harvesting	Future	Unknown	1				Negative CBA	

Multi-function pavements

Description of	Technical	Financial	Sustainability impact		Why	Why not	Potential	
enhancement	feasibility	impact	Ecological ('planet')	Financial ('profit')	Social ('people')			for use by NRA
Dynamic markings (lane delineation)	Future	=			1	Improve safety	Insufficient light energy storage	
Dynamic markings (lane control)	Future	Unknown			1	Improve traffic movement	Cost and technology	
Inductive charging	Near- Future	++	×			Increased electric vehicle use?	Cost and technology	
Heat capture/storage	Near- Future	**	1	1		Renewable energy generation	Cost and technology	
Modular pavements	Near	++			¥	Less disruption to road users. Faster installation and maintenance	Cost	
Self-healing surfaces	Near	=	1			Less maintenance	Limited surface types	
Air pollutant capture	Future	=	1		1	Health issues	Efficiency	
Energy generation	Near							
Recycled materials (asphalt & concrete)	Now - Near	- to =	1	1		Ecology	Durability concern	
Recycled materials (tyres, etc.)	Near	++	×			Ecology	Durability concern	

Potential future traffic scenarios

Objectives

- Model the impact(s) on roadside traffic noise of potential changes to national road networks & vehicle fleets
- Examples of such changes include
 - Changes in traffic composition (e.g. % HGVs)
 - Presence of electric vehicles within fleets
 - Introduction of quieter tyres
 - Use of different low-noise road surfaces
 - Use of ITS for traffic control & management
- Modelling undertaken using the harmonised EU noise prediction model CNOSSOS-EU

Review of vehicle fleets & road infrastructure data results

- An increase in motorways as a fraction of the road network
- An increase in the use of Intelligent Transport Systems, designed to smooth traffic flow
- An increase in LGVs as a fraction of the fleet
- An increase in the use of durable low-noise road surfaces
- An increase in the use of electric & hybrid electric cars

Modelling scenarios (What if...)

(Baseline: 5000 vehicles/h; DAC 0/11 road)

- Road type (by speed): Motorways (free-flowing & congested), national trunk roads, principal local roads, minor local roads
- Traffic volume: 50% increase in volume; 50% increase in HGVs;
 50% decrease in HGVs
- Motorway regulations: 10 km/h speed limit increase for freeflowing; ITS for congested traffic
- **Other road surfaces**: SMA 0/6, two-layer porous asphalt, EACC
- Impact of studded tyres: Apply to 100% cars only
- Increased use of electric vehicles: Apply to 100% cars only

Modelling results (across road types)

	Difference in L _{Aeq,1h} relative to baseline		
Increase in traffic volume	+ 1.8 dB		
Changes in %HGV (exc. congested motorways)	-0.4 dB to +0.4 dB		
Changes in %HGV (congested motorways only)	-2.2 dB to +1.5 dB		
Increased motorway speed limits (free-flowing motorways only)	+ 1.1 dB		
ITS systems (congested motorways only)	-3.1 dB		
Road surfaces (exc. congested motorways)	-5.9 dB to +1.2 dB		
Studded tyres (exc. congested motorways)	1.2 dB to 3.0 dB		
Electric vehicles	-0.8 dB to -0.3 dB		
Vehicle regulations	-1.6 dB to -0.2 dB		
Future scenario (low-noise thin surface, some ITS, quieter cars with quieter tyres, 25% EVs)	-4.6 dB to +2.4 dB		
SILENTROADS			

- Not a huge noise benefit from future vehicle(s)
- Real benefits require infrastructure changes
- ITS and road surface types can help
- Overall trend is to quieter traffic even if noise is not the driver
- No 'silver bullet' for traffic noise but...
- ... lower noise levels can be achieved!

DE WEGNBOUW

OR

Smart noise mitigation measures

MEASURES SELECTED FOR THE SPECIFIC INTEREST OF NRAs

- Traffic flow measures: diversion of traffic volumes
- Traffic speed measures
- future ITS applications
- Junction design
- Traffic tolls
- Tyre noise limits
- New EU vehicle noise limits
- Diffractors
- Helmholtz resonators in pavements
- Poroelastic road surfaces (PERS)
- Soft ground along the road
- Artificial surfaces
- Sonic crystals

For higher levels of noise mitigation (IL≥7 dB(A))

- Poroelastic Road Surfaces (PERS)
 - Constraints: None
 - Cost band: more expensive
 - Unequalled noise reducing potential
- Sonic crystals
 - Constraints: space
 - Cost band: more expensive

For medium levels of noise mitigation (3 dB(A)≤IL<7 dB(A))

- Diffractors
 - Constraints: safety barriers
 - Cost band: less expensive
 - Context: highways in sub-urban

- Replacing hard ground with soft ground
 - Constraints: space
 - Cost band: less expensive
 - Context: rural areas

Perception of noise and noise mitigation measures

Perception of noise and noise mitigation measures

- Annoyance from road traffic is very much influenced by the context of the situation (psycho-acoustics)
- Aim: reducing the actual annoyance rather than noise by influencing perception with non acoustical measures

Perception and awareness of noise mitigation measures

- Communication & participation
 - Annoyance can increase by lack of control of the nuisance
 - Being informed & involved & treated fairly can enhance perceived control as such reduce annoyance
 - Organized events can be a great tool
 - Use of websites & social media can be positive tools
- Compensation
- Little or no data about influencing nuisance with e.g. visual aspects of noise barriers

Special thanks to consortium members!

- Johan Maeck (BRRC, BE)
- Phil Morgan (TRL, UK)
- Truls Berge (SINTEF, NO)
- Massimo Losa (ANAS, IT)
- Matthew Muirhead (TRL, UK)
- Herold Olsen (SINTEF, NO)
- Patrizia Belucci (ANAS, IT)